Effect of Solar Proton Events on the Middle Atmosphere During the Past Two Solar Cycles as Computed Using a Two-Dimensional Model
نویسندگان
چکیده
Daily average solar proton flux data for the years 1963-1984 (two solar cycles) have been used in a proton energy degradation scheme to derive ion pair production rates and, subsequently, HOx (H, OH, HO2) and NOx (N, NO, NO2) production rates. These HOx and NOx production rates are computed in a form suitable for inclusion in an atmospheric two-dimensional time-dependent photochemical model. The HOx increases, although large for certain solar proton events (SPEs), are relatively short-lived because the HOx species have lifetimes of only hours in the middle atmosphere. For longer-lived NOx species, increases are important for 2-4 months past the more intense SPEs but are generally negligible 6 months after the SPE. The only exception to this scenario was the gigantic August 1972 SPE, whose stratospheric effects lasted about a year past the event. Comparisons of model results with the ozone data from the Nimbus 4 backscattered ultraviolet (BUV) instrument indicate relatively good agreement in the time dependence and magnitude of the ozone depletion for the middle stratosphere between the model and measurements for the August 1972 SPE and for 2 months past the event. The model predictions for the August 1972 SPE indicate at most a 1% decrease in total ozone at the highest latitudes with a significant interhemispheric difference. The model predicts a larger middle latitude stratospheric ozone change in the southern than the northern hemisphere caused by the difference in seasons between the two hemispheres. The computed ozone decreases associated with the HOx and NOx increases are substantial in the upper stratosphere at high latitudes for only a few SPEs in the 22 years studied. A mechanism ispresented for transport of NOy from the stratosphere to the ground, which may be involved in the enhancements in nitrate fluxes noticed in Antarctic deposition data. Our computations, however, indicate that the SPE contributions to these nitrate fluxes (even for the August 1972 SPE) are probably small.
منابع مشابه
The Effect of Solar Particles in the Choice of Alloy Shielding in a Satellite
The damages and logical failures in dierent parts of a satellite may occur during a solar event, when a bulk of solar energetic particles approaching the Earth. During solar events, these particles may cause extensive damages which are even permanent (hard errors). A way of damage reduction is designing a proper coating as the fuselage. As protons are the major component of solar particles and ...
متن کاملNumerical Investigation of Roofing Materials Effect on Solar Heat Gain in Different External Conditions
In this study, the thermal performance of three kinds of roofs with different heat capacity and thermal conductivity under different external conditions has been investigated using a numerical method. For this purpose, the combined solar radiation, conduction and convection heat transfer were calculated implicitly in terms of a one-dimensional finite difference method. Different high and low so...
متن کاملNumerical Investigation of Effective Parameters on Efficiency of Solar Chimney
The environmental pollution crisis caused by the excessive use of fossil fuels and the risk of the destruction of natural resources and reserves, as well as the excessive production of greenhouse gases and, consequently, global warming, led many energy researchers to use renewable energy As a fossil fuel alternative. Solar chimneys are one of the types of renewable energies that have been taken...
متن کاملMiddle Atmospheric Changes Caused by the January and March 2012 Solar Proton Events
The recent 23–30 January and 7–11 March 2012 solar proton event (SPE) periods were substantial and caused significant impacts on the middle atmosphere. These were the two largest SPE periods of solar cycle 24 so far. The highly energetic solar protons produced considerable ionization of the neutral atmosphere as well as HOx (H, OH, HO2) and NOx (N, NO, NO2). We compute a NOx production of 1.9 a...
متن کاملOne-Dimensional Electrolyzer Modeling and System Sizing for Solar Hydrogen Production: an Economic Approach
In this paper, a solar based hydrogen production in the city of Tehran, the capital of Iran is simulated and the cost of produced hydrogen is evaluated. Local solar power profile is obtained using TRNSYS software for a typical parking station in Tehran. The generated electricity is used to supply power to a Proton Exchange Membrane (PEM) electrolyzer for hydrogen production. Dynamic nature of s...
متن کامل